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Non-intersecting Brownian motions in 1d

@ N Brownian motions in one-dimension

xi(t) = Gi(t) , {Ci(HG(T))

= 6;j0(t — t')
x1(0) < x2(0) < ... < xn(0)

@ Non-intersecting condition

x;(t)
24(0) \_/—_\/
x1() < xo(t) < ...<xn(t), 20 N
21(0) /—\/_\
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Non-intersecting Brownian motions in 1d

@ N Brownian motions in one-dimension

xi(t) = Gi(t) , {Gi(DG(T))

= §;6(t—t)
x1(0) < x2(0) < ... < xn(0)

@ Non-intersecting condition
;i(t) N =4

x1(f) < x(t) <...<xn(b), m

vt >0 1

watermelons

G. Schehr (LPT Orsay) EVS of non-intersecting BM’s and RMT Budapest, July 12 2/25



Non-intersecting Brownian motions in 1d

@ N Brownian motions in one-dimension

xi(t) = Gi(t) , (G()¢G(t)) = dijo(t — ')
x1(0) < x2(0) < ... < xn(0

@ Non-intersecting condition
zi(t) N=4

x1(f) < x(t) <...<xn(b), @

vt >0 1

watermelons "with a wall"
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Vicious walkers in physics

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 48, NUMBER 5§ 1 MARCH 1908

Soluble Model for Fibrous Structures with Steric Constraints

P.-G. pE GENNES

L

Fic. 1. Model for a two-dimensional fiber structure. The
component chains are assumed to be attached to two plates T and
T and placed under tension, The chains are bent by thermal
fluctuations, Different chains cannot intersect each other.
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Vicious walkers in physics

o P.G.de Gennes, Soluble Models for fibrous structures with steric constraints (1968)
@ M. E. Fisher, walks, Walls, Wetting and Melting (1984)

@ D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and
random matrices (1997)

@ C. Krattenthaler, Asymptotics for random walks in alcoves of affine Wey!
groups (2003)

@ H. Spohn, M. Praehofer, P. L. Ferrari et al. Stochastic growth
models (2006)
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Extreme statistics of vicious walkers

x1(t) < xo(t) < ... < xn(t)
M = mTax[xN(T),O <7 <]

T xn(tm) = M

Pn(M, 1) = joint probability distribution function of M, 7
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Extreme statistics of vicious walkers

x1(t) < xo(t) < ... < xn(t)
M = mTax[xN(T),O <7 <]

T xn(tm) = M

Pn(M, 1) = joint probability distribution function of M, 7

Q1 : Can one compute Pn(M, ) ?
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Extreme statistics of vicious walkers

x1(t) < xo(t) < ... < xn(t)
M = mTax[xN(T),O <7 <]

T xn(tm) = M

Pn(M, 1) = joint probability distribution function of M, 7

Q1 : Can one compute Py(M, 1) ?

Q2 : Asymptotics of Py(M, ) for large N ?
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@ Vicious walkers and random matrices

e Exact computation using Feynman-Kac formula
e Watermelons with a wall and asymptotic behavior
0 Connection with stochastic growth models

e Conclusion
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@ Vicious walkers and random matrices
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Non intersecting Brownian motions and RMT

@ Joint probability of xq(7), x2(7), - - - , Xxn(7) at fixed time

N2 A 2 ——— SN, X
Proini(X1, X2, -+, xn, 7) o< o (1) N T (x5 — x)Pe 2@ ==
i<j=1
o(t)=+v2r(1—1)

Xi

@ The rescaled positions () are distributed like the eigenvalues of
random matrices of the Gaussian Unitary Ensemble (GUE, g = 2)
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Non intersecting Brownian motions and RMT

@ The rescaled positions % are distributed like the eigenvalues of

a(7)

random matrices of Gaussian Unitary Ensemble (GUE, g = 2)

@ Mean density p()) of eigenvalues A, Ao, - - - , Ay for GUE

p ()
WIGNER SEMI-CIRCLE

TRACY-WIDOM

N //,‘—» »—\\\\\
p(>\) = %[;Qs(/\ - /\a)> ////’/ s%ns

—N)2 0 A— N2
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Watermelons in the limit of large N

@ Consequences for watermelons without wall for large N

XN(T)

Proba[x» < &] = F»(§), Tracy-Widom distribution for g = 2
76 =e (= [ (-0 ax)
where g(x) is the Hasting-Mc Leod’s solution of the Painlevé Il equation

q"(x) = xq(x) + ¢°(x) , g(x) ~ Ai(x) , X = 00

C. A. Tracy, H. Widom '94
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Watermelons in the limit of large N

@ Consequences for watermelons without wall for large N

Xn(T) m+N1/6

VE(t=7) V2

Proba[x» < &] = F2(€), Tracy-Widom distribution for g = 2

@ When N — oo, xn(7) reaches a circular shape

7) ~ 2/ N+/T(1 —7)

& éé Q\ xn(tr=1/2) = VN~ N5 I
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9 Exact computation using Feynman-Kac formula
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Feynman-Kac formula

x,‘(T)
M
M-

2e AN A S
2
&

M—n
: 1
o Pu(M,7) = lim > [ ay pois(e, 1, )<y, le, 0)3(ym — (M= )

Budapest, July 12 11/25

G. Schehr (LPT Orsay) EVS of non-intersecting BM’s and RMT



Feynman-Kac formula

x,‘(T)
M
M-
2¢ A/‘”’Vm‘m A WAl
c i LYY P G )
&
M—n
o Pu(M, ) = lim == [ dy p<m(e, 11y, m)P<m(y, Tmle, 0)3(yn — (M —n))
o pm(:,-|-, ) : computed using Feynman — Kac

G. S., S.N. Majumdar, A. Comtet, J. Randon-Furling '08

Budapest, July 12 11/25
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Exact results for N vicious walkers

@ Joint distribution of M and J. Rambeau, G.S, EPL '10, PRE '11

Pn(M, 7r) = By [det D] ‘U(i) D~ U(1 — 1) J

Dij = (—1)""Hjj_2(0) — e 2" Hyyj o(V2M)
i _ M2
Ui(rm) = 7~ 2 H; (M/\/zw) e 2w

H;(-) = Hermite polynomials
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Exact results for N vicious walkers

@ Joint distribution of M and 7y, J. Rambeau, G.S, EPL '10, PRE '11

Pn(M, 7u) = By [detD] ‘U(r) D" U(1 — i) J

Dij = (—1)""Hij_2(0) — e 2" Hyyj o(V2M)
M2

Ui(rm) = ™2 Hj (M/v 2TM) e *m

H;i(-) = Hermite polynomials

@ Marginal distribution of 7,

N=2: PZ(TM)=4<1 14 10741 — 7ar) )

(1 4 41 — ))572

G. Schehr (LPT Orsay) EVS of non-intersecting BM’s and RMT Budapest, July 12 12/25



Exact results for N vicious walkers

@ Joint distribution of M and 7, J. Rambeau, G.S, EPL '10, PRE "11

Pn(M, 7i1) = By [detD] 'U(mp) D~ U(1 — 71 J

Dij = (—1)"""Hiyj-2(0) — €2 Hyyj_o(V2M)
,, i
Ui(tm) = ™ e Hi (M/ V 277‘/’> e =

H;i(-) = Hermite polynomials

@ Asymptotics for large N ?
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Exact results for N vicious walkers

@ Joint distribution of M and 7, J. Rambeau, G.S, EPL '10, PRE "11

Pn(M, 7i1) = By [detD] 'U(mp) D~ U(1 — 71 J

Dij = (—1)"""Hiyj-2(0) — €2 Hyyj_o(V2M)
,, i
Ui(tm) = ™ e Hi (M/ V 277‘/’> e =

H;i(-) = Hermite polynomials

@ Asymptotics for large N ? still difficut

G. Schehr (LPT Orsay) EVS of non-intersecting BM’s and RMT Budapest, July 12



e Watermelons with a wall and asymptotic behavior
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Watermelons with a wall and RMT

@ At fixed time 7
2
Pioint(X, 7) o o(7) 2"’*‘)Hx H (2 — xP)e 00

o(t)=+v2r(1 —1)

@ The rescaled positions y; = %’2@ are distributed like the

eigenvalues of Wishart matrices, with g =2and M — N = ;
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Maximal height of watermelons with a wall

@ Cumulative distribution of the maximal height
M-

Fu(M) = Prim(r) <M, vo<r<i )|/ Hx
1 M J : :

= / dTM/ ax PN(X, TM) / 4:/\— \\\

0 0 V=t ~—— \
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Maximal height of watermelons with a wall

@ Cumulative distribution of the maximal height

M-

i
Fu(M) = Priw(r) <M, ¥0<r<i] | /) B

1 M S N

= dr / dx Pn(x, T N |

/o M 0 N( M) //7 /{ ) «—»,\r\‘\\‘

0 1
T%

@ Feynman-Kac formula
G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling ‘08

A
FN(M) = M2NI;I+N Z Hn H (n e 2M2 ZI ! I

-,nny=0 i=1 1<j<k<N
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Maximal height of watermelons with a wall

@ Cumulative distribution of the maximal height

1Y
NS
r'): \V\\\/
Fy(M) = Prixn(r) <M, V0<7< 1]XT / HN \/\\
1 M S o : \
= d / dx Pn(x, N
/0 ™ o N( TM) //7 //47‘/ 7\777/7\47‘\“
0 1
T——

@ Feynman-Kac formula

AN R A 2 2 2\2 —Lzz 25\1—1 ”/2
Fn(M) = anern >, 17 11 F—neae=r
Ny, ,ny=0i=1  1<j<k<N

What about the asymptotic behavior of Fy(M) for N — oo ? ]
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Large N asymptotics for Fn(M)

@ Using discrete orthogonal polynomials (Gross-Matytsin ‘94,
Crescimanno-Naculich-Schnitzer '96) one shows

2
& g P (VAN(1 + 1/(27*N?"))) = 1 (1) + ¢/(1)
§(t) = 26°(1) + t(t) . q(t) ~ Ai(t) , t - o0

Fu(M) — i (2"/°N"8 (M- V2N

1 o0
) = ow( -3 [ (s-nee) - a(s) o)
= Tracy-Widom distribution for g = 1

P. J. Forrester, S. N. Majumdar, G.S. 11
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Large N asymptotics for Fn(M)

@ Using discrete orthogonal polynomials (Gross-Matytsin ‘94,
Crescimanno-Naculich-Schnitzer '96) one shows

2
& g P (VAN(1 + 1/(27*N?"))) = 1 (1) + ¢/(1)
§(t) = 26°(1) + t(t) . q(t) ~ Ai(t) , t - o0

Fu(M) — i (2"/°N"8 (M- V2N

1 o0
) = ow( -3 [ (s-nee) - a(s) o)
= Tracy-Widom distribution for g = 1

P. J. Forrester, S. N. Majumdar, G.S. 11

@ Also interesting results for large deviations
P. J. Forrester, S. N. Majumdar, G.S.’11
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0 Connection with stochastic growth models
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Curved growing interface : the droplet

@ Polynuclear Growth Model

t=0 t=t>0

|
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Curved growing interface : the droplet

@ Polynuclear Growth Model

t=20 t=t>0

|

@ At large time t the profile becomes droplet-like

h(z,t)
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Vicious walkers and PNG droplet

PNG droplet
watermelons
zn(T) ~ 2V Ny/T(1 = 7) h(z, 1)
\ Y fh(z.t) ~ 2t\/T— (z/t)?
OW T
= =l

Xy < h
T — X
N < t
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Vicious walkers and PNG droplet

PNG droplet
watermelons
an(T) ~ 2V/NA/T(1 = T) h(z, 1)
v T (@/0)

1 UN—2
_ xn(d + YN"3) — VN
h(ut3,1t) 2t d N(z + 5 13) VN gAg(U)—U2
t3 N~s
Prahofer & Spohn '00 Az (u) = Airy, process
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Vicious walkers and PNG droplet

@ Use this correspondence to study extreme statistics of PNG

h(z,t)
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Consequences for curved stochastic growth

@ Distribution of the height field h(0, t) Prahofer & Spohn '00

. h(0, t) — 2t
i # (P ) o

F2(s) = Tracy — Widom distribution for 5 = 2
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Consequences for curved stochastic growth

@ Maximum M = max_i<x<t h(X, t) P Forrester, S. N. Majumdar, G. S. NPB 11

. M — 2t
t'LToP<ﬂT = S) =71

F1(s) = Tracy — Widom distribution for § = 1
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Consequences for curved stochastic growth

@ Maximum M = max_;<x<t h(x, t) P. Forrester, S. N. Majumdar, G. S. NPB 11

M — 2t
JLTOP(1—/3 55) = ()
Fi(s) = Tracy — Widom distribution for 5 = 1

see also
@ Krug et al. '92, Johansson '03 (indirect proof),

@ G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716
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Experiments on nematic liquid crystals

K. A. Takeuchi, M. Sano, Phys. Rev. Lett. 104, 230601 (2010)
K. A. Takeuchi et al., Sci. Rep. 1, 34 (2011)

Extreme-Value Statistics (circular)

max height
radius R|: GUE-TW  |max(R sin ) ) : GOE-TW distribution!!

10°
max radius
5 max R | :Gumbel dist.
cdf(x) = exp(—e®™)
107
5
[=}
10"
-6

rescaled radius/height

Max heights of circular interfaces obey the GOE-TW dist.!
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e Conclusion
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Conclusion

@ Connection between vicious walkers and random matrices

@ The maximal height is given, for N — oo, by the Tracy-Widom
distribution 5 = 1

@ It can be measured experimentally through the connection with
stochastic growth models
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Conclusion

@ Connection between vicious walkers and random matrices

@ The maximal height is given, for N — oo, by the Tracy-Widom
distribution 5 = 1

@ It can be measured experimentally through the connection with
stochastic growth models

@ What about the distribution of the position of the maximum for
large N ?
see recent results by G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716
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