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Non-intersecting Brownian motions in 1d

N Brownian motions in one-dimension

ẋi(t) = ζi(t) , 〈ζi(t)ζj(t ′)〉 = δi,jδ(t − t ′)
x1(0) < x2(0) < ... < xN(0)

Non-intersecting condition

x1(t) < x2(t) < ... < xN(t) ,
∀t ≥ 0

0 t

x2(0)

x1(0)

x3(0)

x4(0)

xi(t)
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Non-intersecting Brownian motions in 1d

N Brownian motions in one-dimension

ẋi(t) = ζi(t) , 〈ζi(t)ζj(t ′)〉 = δi,jδ(t − t ′)
x1(0) < x2(0) < ... < xN(0)

Non-intersecting condition

x1(t) < x2(t) < ... < xN(t) ,
∀t ≥ 0

xi(t)

t
1

0

N = 4

watermelons "with a wall"
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Vicious walkers in physics
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Vicious walkers in physics

P. G. de Gennes, Soluble Models for fibrous structures with steric constraints (1968)

M. E. Fisher, Walks, Walls, Wetting and Melting (1984)

D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and

random matrices (1997)

C. Krattenthaler, Asymptotics for random walks in alcoves of affine Weyl

groups (2003)

H. Spohn, M. Praehofer, P. L. Ferrari et al. Stochastic growth

models (2006)

...
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Extreme statistics of vicious walkers

10 ττM

M

xi(τ ) N = 4

x1(t) < x2(t) < ... < xN(t)
M = max

τ
[xN(τ),0 ≤ τ ≤ 1]

xN(τM) = M

PN(M, τM) ≡ joint probability distribution function of M, τM

Q1 : Can one compute PN(M, τM) ?

Q2 : Asymptotics of PN(M, τM) for large N ?
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1 Vicious walkers and random matrices

2 Exact computation using Feynman-Kac formula
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Non intersecting Brownian motions and RMT

τ

xi(t)

t
1

0

Joint probability of x1(τ), x2(τ), · · · , xN(τ) at fixed time τ

Pjoint(x1, x2, · · · , xN , τ) ∝ σ(τ)−N2
N∏

i<j=1

(xi − xj)
2e
− 1

σ2(τ)

∑N
i=1 x2

i

σ(τ) =
√

2τ(1− τ)
The rescaled positions xi

σ(τ) are distributed like the eigenvalues of
random matrices of the Gaussian Unitary Ensemble (GUE, β = 2)
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Non intersecting Brownian motions and RMT

The rescaled positions xi
σ(τ) are distributed like the eigenvalues of

random matrices of Gaussian Unitary Ensemble (GUE, β = 2)

Mean density ρ(λ) of eigenvalues λ1, λ2, · · · , λN for GUE

ρ(λ) =
1
N

N∑

α=1

〈δ(λ− λα)〉

(2N)
1/2(2N)

1/2
− 0

ρ (λ)

N
−1/6

TRACY−WIDOM

WIGNER  SEMI−CIRCLE

λ

SEA
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Watermelons in the limit of large N

Consequences for watermelons without wall for large N

xN(τ)√
2τ(1− τ)

∼
√

2N +
N−1/6
√

2
χ2

Proba[χ2 ≤ ξ] = F2(ξ), Tracy-Widom distribution for β = 2

F2(ξ) = exp
(
−
∫ ∞

ξ

(x − ξ)q2(x) dx
)

where q(x) is the Hasting-Mc Leod’s solution of the Painlevé II equation

q′′(x) = x q(x) + q3(x) , q(x) ∼ Ai(x) , x →∞

C. A. Tracy, H. Widom ’94
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Watermelons in the limit of large N

Consequences for watermelons without wall for large N

xN(τ)√
2τ(1− τ)

∼
√

2N +
N−1/6
√

2
χ2

Proba[χ2 ≤ ξ] = F2(ξ), Tracy-Widom distribution for β = 2

When N →∞, xN(τ) reaches a circular shape

10 τ

xN(τ ) ∼ 2
√
N
√

τ (1− τ )

Fluctuations
xN(τ = 1/2)−

√
N ∼ N−

1
6
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Feynman-Kac formula

M

!
M

M

)"(ix

!

0 1 "

y

y

1

2
2
#

"

#

• PN(M, τM) = lim
ε,η→0

1
ZN

M−η∫

−∞

dy p<M(ε,1|y, τM)p<M(y, τM |ε,0)δ(yN − (M − η))

• p<M(·, ·|·, ·) : computed using Feynman− Kac

G. S., S.N. Majumdar, A. Comtet, J. Randon-Furling ’08
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Exact results for N vicious walkers

Joint distribution of M and τM J. Rambeau, G.S, EPL ’10, PRE ’11

PN(M, τM) = BN [det D] tU(τM)D−1 U(1− τM)

Di,j = (−1)i−1Hi+j−2(0)− e−2M2
Hi+j−2(

√
2M)

Ui(τM) = τM
− i+1

2 Hi

(
M/
√

2τM

)
e−

M2
2τM

Hi(·) ≡ Hermite polynomials
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PN(M, τM) = BN [det D] tU(τM)D−1 U(1− τM)

Di,j = (−1)i−1Hi+j−2(0)− e−2M2
Hi+j−2(

√
2M)

Ui(τM) = τM
− i+1

2 Hi

(
M/
√

2τM

)
e−

M2
2τM

Hi(·) ≡ Hermite polynomials

Marginal distribution of τM

N = 2 : P2(τM) = 4
(

1− 1 + 10τM(1− τM)

(1 + 4τM(1− τM))5/2

)
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PN(M, τM) = BN [det D] tU(τM)D−1 U(1− τM)

Di,j = (−1)i−1Hi+j−2(0)− e−2M2
Hi+j−2(

√
2M)

Ui(τM) = τM
− i+1

2 Hi

(
M/
√

2τM

)
e−

M2
2τM

Hi(·) ≡ Hermite polynomials

Asymptotics for large N ? still difficut BUT ...
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Watermelons with a wall and RMT

τ

xi(t)

t
1

0

At fixed time τ

Pjoint(x, τ) ∝ σ(τ)−N(2N+1)
N∏

i=1

x2
i

∏

1≤i<j≤N

(x2
i − x2

j )
2e
− x2

σ2(τ)

σ(τ) =
√

2τ(1− τ)

The rescaled positions yi =
x2

i
2σ2(τ)

are distributed like the

eigenvalues of Wishart matrices, with β = 2 and M − N = 1
2
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Maximal height of watermelons with a wall

Cumulative distribution of the maximal height

FN(M) = Pr [xN(τ) ≤ M , ∀0 ≤ τ ≤ 1]

=

∫ 1

0
dτM

∫ M

0
dx PN(x , τM)

.

.

.

.
HN

x

0 1

τ

M

What about the asymptotic behavior of FN(M) for N →∞ ?
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.

.

.

.
HN

x

0 1

τ
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Feynman-Kac formula
G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling ’08

FN(M) =
AN

M2N2+N

+∞∑

n1,··· ,nN=0

N∏

i=1

n2
i

∏

1≤j<k≤N

(n2
j − n2

k )
2e−

π2

2M2
∑N

i=1 n2
i

What about the asymptotic behavior of FN(M) for N →∞ ?
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Large N asymptotics for FN(M)

Using discrete orthogonal polynomials (Gross-Matytsin ’94,
Crescimanno-Naculich-Schnitzer ’96) one shows

d2

dt2 log FN

(√
2N(1 + t/(27/3N2/3))

)
= −1

2

(
q2(t) + q′(t)

)

q′′(t) = 2q3(t) + t q(t) , q(t) ∼ Ai(t) , t →∞
i.e.

FN(M) → F1

(
211/6N1/6

∣∣∣M −
√

2N
∣∣∣
)

F1(t) = exp
(
− 1

2

∫ ∞

t

(
(s − t)q2(s)− q(s)

)
ds
)

≡ Tracy-Widom distribution for β = 1

P. J. Forrester, S. N. Majumdar, G.S. ’11

Also interesting results for large deviations
P. J. Forrester, S. N. Majumdar, G.S. ’11
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Curved growing interface : the PNG droplet

Polynuclear Growth Model

t = t1 > 0t = 0 t = t2 > t1

seed

At large time t the profile becomes droplet-like
h(x, t)

h(x, t) ∼ 2t
√
1− (x/t)2

x
+t−t
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Vicious walkers and PNG droplet

watermelons

10 τ

xN(τ ) ∼ 2
√
N
√

τ (1− τ )

PNG droplet

h(x, t)

h(x, t) ∼ 2t
√
1− (x/t)2

x
+t−t

xN ⇐⇒ h
τ ⇐⇒ x
N ⇐⇒ t
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Vicious walkers and PNG droplet

watermelons

10 τ

xN(τ ) ∼ 2
√
N
√

τ (1− τ )

PNG droplet

h(x, t)

h(x, t) ∼ 2t
√
1− (x/t)2

x
+t−t

h(ut
2
3 , t)− 2t

t
1
3

d
=

xN(
1
2 + u

2 N−
1
3 )−

√
N

N−
1
6

d
= A2(u)− u2

Prähofer & Spohn ’00 A2(u) ≡ Airy2 process
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Vicious walkers and PNG droplet

Use this correspondence to study extreme statistics of PNG

10 ττM

M

xi(τ ) N = 4

h(x, t)

x
+t−t XM

M
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Consequences for curved stochastic growth

h(x, t)

x
+t−t XM

M

Distribution of the height field h(0, t) Prähofer & Spohn ’00

lim
t→∞

P
(

h(0, t)− 2t
t1/3 ≤ s

)
= F2(s)

F2(s) ≡ Tracy−Widom distribution for β = 2
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Consequences for curved stochastic growth

h(x, t)

x
+t−t XM

M

Maximum M ≡ max−t≤x≤t h(x , t) P. Forrester, S. N. Majumdar, G. S. NPB ’11

lim
t→∞

P
(

M − 2t
t1/3 ≤ s

)
= F1(s)

F1(s) ≡ Tracy−Widom distribution for β = 1
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Consequences for curved stochastic growth

Maximum M ≡ max−t≤x≤t h(x , t) P. Forrester, S. N. Majumdar, G. S. NPB ’11

lim
t→∞

P
(

M − 2t
t1/3 ≤ s

)
= F1(s)

F1(s) ≡ Tracy−Widom distribution for β = 1

see also
Krug et al. ’92, Johansson ’03 (indirect proof),

G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716
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Experiments on nematic liquid crystals

K. A. Takeuchi, M. Sano, Phys. Rev. Lett. 104, 230601 (2010)

K. A. Takeuchi et al., Sci. Rep. 1, 34 (2011)

ExtremeExtreme--Value Statistics (circular)Value Statistics (circular)

: GUE-TWradius : GOE-TW distribution!!
max height

: Gumbel dist
max radius

: Gumbel dist.

Max heights of circular interfaces obey the GOE-TW dist.!
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Conclusion

Connection between vicious walkers and random matrices

The maximal height is given, for N →∞, by the Tracy-Widom
distribution β = 1

It can be measured experimentally through the connection with
stochastic growth models

What about the distribution of the position of the maximum for
large N ?

see recent results by G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716
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